Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

PLC Type WDM

Instead of taking a thin film filter to mux or demux wavelengths, PLC type achieves the same goal by using chip PLC, which uniformly divides and guides light with different wavelengths. At KBAN, we currently provide multi-channel AWG DWDM Modules and 4ch CWDM/LWDM Devices.

PLC-type WDM products are a type of product developed based on planar optical waveguide technology, which uses the principle of arrayed waveguide grating to realize the function of wave division and multiplexing; currently this type of product is mainly divided into two categories, the first category is high-channel 100G DWDM product AWG; the second type is low-channel CWDM or Lan-WDM, the first type is mainly used in high-density long-distance metro DWDM transmission network, and cooperates with EDFA to realize long-distance high-capacity backbone fiber transmission; the second type Mainly used in TOSA and ROSA of QSFP optical module to realize 4*10G/4*25G parallel high-speed transmission.

FAQs of PLC Type WDM

TFF is composed of dozens to hundreds of dielectric films of different materials, refractive index and thickness. One layer is of high refractive index and the other is of low refractive index, so it is a passband for a certain wavelength range and a stopband for another wavelength range, forming the required filtering characteristics.

MZ, Mach Zehnder, Mach Zehnder modulator. The modulator divides the input light into two equal signals and enters the two optical branches of the modulator respectively. The materials used in the two optical branches are electro-optical materials, and their refractive index varies with the external applied electric signal. Because the change of the refractive index of the optical branch will lead to the change of the signal phase, when the output ends of the two branch signal modulators are combined together again, the synthesized optical signal will be an interference signal with varying intensity, which is equivalent to converting the change of electric signal into the variation of optical signal and realizing the modulation of light intensity.

MZ, Mach Zehnder, Mach Zehnder modulator. The modulator divides the input light into two equal signals and enters the two optical branches of the modulator respectively. The materials used in the two optical branches are electro-optical materials, and their refractive index varies with the external applied electric signal. Because the change of the refractive index of the optical branch will lead to the change of the signal phase, when the output ends of the two branch signal modulators are combined together again, the synthesized optical signal will be an interference signal with varying intensity, which is equivalent to converting the change of electric signal into the variation of optical signal and realizing the modulation of light intensity.

MZ, Mach Zehnder, Mach Zehnder modulator. The modulator divides the input light into two equal signals and enters the two optical branches of the modulator respectively. The materials used in the two optical branches are electro-optical materials, and their refractive index varies with the external applied electric signal. Because the change of the refractive index of the optical branch will lead to the change of the signal phase, when the output ends of the two branch signal modulators are combined together again, the synthesized optical signal will be an interference signal with varying intensity, which is equivalent to converting the change of electric signal into the variation of optical signal and realizing the modulation of light intensity.

MZ, Mach Zehnder, Mach Zehnder modulator. The modulator divides the input light into two equal signals and enters the two optical branches of the modulator respectively. The materials used in the two optical branches are electro-optical materials, and their refractive index varies with the external applied electric signal. Because the change of the refractive index of the optical branch will lead to the change of the signal phase, when the output ends of the two branch signal modulators are combined together again, the synthesized optical signal will be an interference signal with varying intensity, which is equivalent to converting the change of electric signal into the variation of optical signal and realizing the modulation of light intensity.